
e Fermi National Accelerator Laboratory

FERMILAB-TM-1742

A Note on the Automated Differentiation
of Implicit Functions

L. Michelotti
Fermi National Accelerator Laboratory

P.O. Box 600
Batavia. Illinois 60510

June 1991

4E Operated by Unlversitles Research Assoclatlon Inc. under contract with the United States Dspartment of Energy

A note on the automated differentiation of implicit
functions.

Leo Michelotti

June 27, 1991

The question is this: Can automated differentiation be used on functions that are
defined implicitly, recursively, or iteratively? Consider, for example, the simple function
z(m) defined implicitly by the equation,

z(m) = cos(m ‘s(m)) (1)

Simple recursion (iteration?) can be used to construct z(m) for m in the approximate range,
m E (O,l.Z), determined by the condition Imsin(rn. z(m))1 < 1. That is, the pseudocode,
x := 0;
read m;
until convergence do: x + cm(m) ;

will converge on the value z(m). Will it corzverge on its DA prolongation?’ If it does, then
we have a method for computing ezactly, to machine accuracy, the derivatives of (at least
some) implicit functions. If these functions define the critical points of a map, as this one
does, then their derivatives can be used to study the dependence of these critical points on
the map’s parameters.

An experiment done using the CSS package MXYZPTLK [l] indicates that it does.
The source code and output of this experiment, slightly edited for aesthetics, are given on
the following pages. After preliminary boilerplate, we initialize a DA variables, xd and md,
on SOURCE A line 12. A first look at xd, called for in SOURCE A line 19, is recorded in
OUTPUT A lines 3-12. SOURCE A lines 21-23 call for 50 recursive steps (much more than
necessary) of the recursion, after which SOURCE A lines 26 and 28 print out the variable
and its difference from cos(md . xd). Tl lese are recorded in OUTPUT A lines 16-33. We see
that xd has changed, indicating that a single pass was not enough. The real test, however,
occurs after SOURCE A line 33, where comparisons are made between z(m) as obtained
by double-precision recursion and evaluating the polynomial represented by xd. As one

‘A prolonged function explicit,ly carries information about derivahves. For terminology used in this
memo see [l] and [2].

,,,;$-x.. &cl derivative

o.2 L >: :!, .f.)\~~~~~~~1~~~~~~~..: ~.~.~~~~.~~~~~~~~~~~~~~~~:~~ .._

'..,,.' " I' ~ '\

I' ~ 'i,
.".

,: ',

0 -;-.-----.-,:.--- ,~ ,___ ~ \ ~.~.;.+ _._,. u:_...3.. :sth derivative f'-.~-‘.+ .,.-.,-

\
-.

-..;..-7:

\ I

“L,'.; ;; _. .,1'. _;. _. .1:-Y j _ y.de?r'.".=

-0.2
; ~ 5 / A.,. ._!.L__ .__.___ %~4.E.El!c?~iY~ -:-ii; _i.... ;~...~..~~~‘~~;,.i'l..:--__.- ~~~~~~~~~~~~~~~~~~~~.~~ .:.................._

_ \ ', :i*t derivarive --;--7'---'---------I--------------------~----------

-0.4 -.....y; L....... I j ~ ..-

.,' ~

-0.6
0 2 4 6 8 10

Figure 1: Behavior of the coefficients with iteration number.

can see from OUTPUT A lines 36ff, printed by SOURCE A lines 41-42, the agreement is
“perfect.”

Although 50 recursive steps were used in this test, the derivatives of z(m) converge
after the first ten or so, as illustrated in Figure 1. What are displayed in the figure are
the weighted derivatives, the coefficients of the polynomial representation of z(m) about
m = 0.5.

As mentioned above, the range of m for which the recursion, Eq.(l), converges is very
limited. We can extend our computation of z(m) by using Newton’s a,lgorithm instead.
SOURCE B is such a. program. In order to calculate x(m), we find a zero of the function,
F(s) = r - cosmz. This function is defined in SOURCE B lines 13-14, both in double
precision and DA form. A Newton’s solver is implemented in SOURCE B lines 16-45.
The heart of this is contained in lines 32-33, where we construct a DA variable, G, that
corresponds to a single Newton step, cc + z - F/F’. (The array dfNdx was defined in line
6.) Notice that as far as the solver is concerned F is an arbitrary function. G then invokes
its double-precision multiEva method, in line 34, in order to set up the next recursive
step of the loop (lines 2%40). (multiEva evaluates the polynomial represented by the
DA variable.) The main progam invokes this solver at line 65 to construct z(m) at one
value of m. Then, iu lines 70-75, G invokes its multiEva evaluation method in DA mode
repeatedly in order to comtruct the derivatives of z(m). (As before, doing this fifteen times
was conservative overkill.) The resultant polynomial expansion is validated in lines 86-95,
where z(m) is calculated and tested for a range in m, the output of the program being

recorded in OUTPUT B. Notice the errors creeping into the fifth significant figure at the
limits of this range, indicative of requiring a more than six-term polynomial. The number
of derivatives computed was determined in SOURCE B lines 50 and 55 via the vxiable
maxweight. A subsequent run, using maxweight = 9, produced complete agreement over
the full range, and beyond.

We have demonstrated how DA can be used to calculate derivatives of a function defined
implicitly. In the next note we shall extend these considerations to multi-dimensional maps,
including the discussion of a tool for calculating fixed points from the source code of a
mapping.

References

[I] Leo Michelotti. MXYZPTLK: A practical, user-friendly C++ implementation of dif-
ferential algebra: User’s guide. Fermi Note FN-535, Fermilab, January 31, 1990.

[2] Leo Michelotti. Differential algebras without differentials: an easy C++ implementa-
tion. In Floyd Bennett and Joyce Kopta, editors, Proceedings of t/w 1989 IEEE Particle
Accelerator Confew~ce. IEEE, March 20-23, 1989. IEEE Catalog Number 89CH2669-0.

C++ SOURCE A

I #include <stdio.h>
2 #include "mxyzptlk.rsc"
3
4 main0 C
6 const double tolerance = 1.00-7;
6 tonst int dim = 1;
7 mnst int maxWeight = 6;
8 double 10, x, xDld;
9 int i;

10
11 DASatup(dim, maxweight);
12 DA md, xd;
13
14 m = 0.5;
15 I = 0.900367; // The value of x(0.5) ,.
16 md.setVariable(m, 0 1;
17 xd = cos(md * x);
18 printf("\n\nAfter single step:\n" 1;
19 xd.peekAt();
20
21 for(i = 0; i < 50; i++) {
22 xd = cos(md * xd);
23 ?
24
25 printf("\n\nAfter the loop:\n");
26 xd.peekAt();
27 printf("\n\nComparison test:\n'O);
28 (xd - cos(md * xd)) .peekAt();
29
30 double mLo = 0.4,
31 mHi = 0.6,
32 step = 0.02;
33 printf("\n\nThe real test:\n" 1;
34 for(m = mLo; 10. < (mlii + 0.5*stap); m+=step)C
35 xOld = x;
36 x = cos(m*xOld);
37 uhile((fabs(x - xOld) > tolerance)) C
38 xOld = x;
39 x = cos(m*xOld);
40 1
41 printf("%lf %lf %lf\n",
42 m, x, xd.multiEval(&m)
43);
44 1
45
46 > // End function: main0

OUTPUT A:

1 After single step:
2
3 Count = 7, Weight = 6, Max accurate weight : 6
4 Reference point:
5 5.000000e-01
6 Index: 0 Value: 9.003673w01
7 Index: 1 Value: -3.917774e-01
8 Index: 2 Value: -3.649462v01
9 Index: 3 Value: 5,293309e-02

10 Index: 4 Value: 2.4653968-02
ii Index: 5 Value: -2.145539e-03
12 Index: 6 Value: -6,662000a-04
13
14 After the loop:
15
16 Count = 7, Weight = 6, Max accurate weight = 6
17 Reference point:
18 5.000000e-01
19 Index: 0 Value: 9.003672e-01
20 Index: I Value: -3.217713e-01
21 Index: 2 Value: -8.719257e-02
22 Index: 3 Value: 2.550414e-01
23 Index: 4 Value: -1,890445e-01
24 Index: 5 Value: -6.608513e03
25 Index: 6 Value: 1.761623e-01
26
27 Comparison test:
28
29 count = 1, Weight = 0, Max accurate weight = 6
30 Reference point:
31 5.000000e-01
32 Weight: 0 Value: 0.000000et00
33 Index: 0
34
35 The real test:
36 0.400000 0.931399 0.931399
37 0.420000 0.925413 0.925413
38 0.440000 0.919302 0.919302
39 0.460000 0.913082 0.913082
40 0.480000 0.906766 0.906766
41 0.500000 0.900367 0.900367
42 0.520000 0.893899 0.893899
43 0.540000 0.887373 0.887373
44 0.560000 0.880800 0.880800
45 0.580000 0.874190 0.874190
46 0.600000 0.867554 0.867554

5

C++ SOURCE B

1 #include <stdio.h>
2 #include "mxyzptlk.rsc"
3
4 // . . Globals .
5 const double tolerance = l.Oe-8;
6 const int dfNdxC1 = c 0, I 1;
7 const int maX1t.U = 15;
8
9 double m;

10 DA G, md. xd;
11
12 // Functions .
13 DA F(DAB x) C return (x - cos(md*x)); 1
14 double F(double x) < return (x - cos(m *x) 1; >
15
16 double solve(double m, double x) (
17 double xOld, s[2];
18 int i;
19
20 md.setVariable(m. 0);
21 xd.setVariable(x, 1);
22 md.fixReference();
23 xd.fixReference();
24
25 sCO1 = 10; i = 0;
26 sCl1 = x; xOld = 123456789.0;

27
28 uhile((tolerance < fabs(x - xOld 1)
29 88 (it+ < maxIter)
30) c
31 xOld = x;
32 G = F(xd 1;
33 G = xd - (G / G.D(dfNdx) 1; // Sets up Newton's algorithm.
34 x = G.multiEval(s); // Recursive step.
35 md.setVariable(m. 0);
36 xd.setVariable(x, 1 1;
37 md.fixReference();
38 xd.fixReference();
39 SC11 = x;
40 >
41 G q F(xd); // This is done to assure that G has
42 G = xd - (G / G.D(dfNdx)); // a reference point identical to
43 // md and xd, at least at the start.
44 return x;
45 1
46
47 // Main program .
48 main0 C
49 const int dim = 2:

6

50 const int maxweight = 5;
51 double x;
52 double mLo, mHi, step. sC21;
53 int i, j;
54
55 DASetup(dim, maxWeight, dim); // This form required
56 DA sdC21, Y; // to do multiEval(DA*)
57
56 printf("Ente+ the value of ro\n");
59 printf("and an initial guess for x: ");
60 scanf(Vlf rlf", Bm Btx)' * * > 9
61 gatcharo;
62 printf("You have chosen m = %lf and x = %lf\n", m, X 1;
63
64 // First solve for the value of x(m)
65 x = solve(n, x);
66 printf("x(%lf) = %lf **> In, x);
67 printf("Defect is: %lf\n", F(x));
68
69 // Now calculate the derivatives
70 sdCO1 = md;
71 sdCi1 = xd;
72 for(i = 0; i < maxIter; it+) c
73 rd = G.multiEval(sd);
74 sd[Ol = md;
75 sdCl1 = xd;
76)
77
78 rd.peekAt();
79
80 // And validate .___..,,..__.,.......................
81 printf("\nThe real test:\n");
82 printf("Enter mLo, mHi, and step: " 1;
83 scanf("'/lf '/lf rlf", BmLo BmHi &step); * . I > >
84 getchar();
85
86 Y = xd; // xd is a global variable. and solve() uil
87 // change its value.
88 shl = 1.0; // The value of sC11 no longer matters.
89 for(m = mLo; m < (mfli + 0.5*step); m+=step)C
90 x = sa1ve(m, I);
91 SC01 = m;
92 printf("%lf %lf %lf %lf\n".
93 m, x. Y.multiEval(s 1, F(x)
94);
95)
96
97 1 // End function: main0

I Enter the value of m
2 and an initial for x: 0.3 0.6 guess
3 You have chosen m = 0.300000 and x = 0.600000
4 x(0.300000) = 0.958907 Defect is: 0.000000
5
6 Count = 6. Weight = 5. Max accurate weight = 5
7 Reference point:
8 3.000000e-01 9.589070w01

9 Index: 0 0 Value: 9,589070e-01

10 Index: 1 0 Value: -2.507213ee01
11 Index: 2 0 Value: -2.794859e-01
12 Index: 3 0 Value: 3.644146e-01
13 Index: 4 0 Value: -2.356161~02

14 Index: 5 0 Value: -3,628218e-01

15

16 The real test:
17 Enter mLo, mBi, and step: 0.1 0.5 0.1
18 0.100000 0.995053 0.995035 0.000000

19 0.200000 0.980821 0.980821 0.000000

20 0.300000 0.958907 0.958907 -0.000000

21 0.400000 0.931399 0.931398 -0.000000

22 0.500000 0.900367 0.900345 0.000000

8

